Comparative proteomic analysis. PLoS A single. 2015;ten:e0138974. Muraoka S, Kume H, Watanabe S, Adachi J, Kuwano M, Sato M, et al. Technique for SRM-based verification of biomarker candidates found by iTRAQ strategy in restricted breast cancer tissue samples. J Proteome Res. 2012;11:42010. Kaur P, Rizk NM, Ibrahim S, Younes N, Uppal A, Dennis K, et al. iTRAQ-based quantitative protein expression profiling and MRM verification of markers in kind 2 diabetes. J Proteome Res. 2012;11:55279. Barnabas L, Ramadass A, Amalraj RS, Palaniyandi M, Rasappa V. Sugarcane proteomics: an update on existing status, challenges, and future prospects. Proteomics. 2015;15:16580. Jangpromma N, Kitthaisong S, Lomthaisong K, Daduang S, Jaisil P, Thammasirirak S. A proteomics analysis of drought stress-responsive proteins as biomarker for drought-tolerant sugarcane cultivars. Am J Biochem Biotechnol. 2010;6:8902. Ngamhui N, Akkasaeng C, Zhu YJ, Tantisuwichwong N, Roytrakul S, Sansayawichai T. Differentially expressed proteins in sugarcane leaves in response to water deficit stress. Plant Omics. 2012;5:3651. Murad AM, Molinari HBC, Magalh s BS, Franco AC, Takahashi FSC, Franco OL, et al. Physiological and proteomic analyses of Saccharum spp. grown beneath salt strain. PLoS 1. 2014;9:e98463. Pacheco CM, Pestana-Calsa MC, Gozzo FC, Mansur Custodio Nogueira RJ, Menossi M, Calsa Junior T. Differentially delayed root proteome responses to salt pressure in sugar cane varieties. J Proteome Res. 2013;12:56815. Zhou G, Yang LT, Li YR, Zou CL, Huang LP, Qiu LH, et al. Proteomic evaluation of osmotic stress-responsive proteins in sugarcane leaves. Plant Mol Biol Report. 2012;30:3499.29. Rahman MA, Ren L, Wu W, Yan YC. Proteomic evaluation of PEG-induced drought strain responsive protein in TERF1 overexpressed sugarcane (Saccharum officinarum) leaves. Plant Mol Biol Report. 2014;33:7160. 30. Lery LM, Hemerly AS, Nogueira EM, von Kr er WM, Bisch PM. Quantitative proteomic evaluation of the interaction involving the endophytic plantgrowth-promoting bacterium Gluconacetobacter diazotrophicus and sugarcane. Mol Plant-Microbe Interact. 2011;24:5626. 31. Song XP, Huang X, Tian DD, Yang LT, Li YR. Proteomic analysis of sugarcane seedling in response to Ustilago scitaminea infection. Life Sci J. 2013;10:30265. 32. Que YX, Xu LP, Lin JW, Ruan MH, Zhang MQ, Chen RK. Differential protein expression in sugarcane for the duration of sugarcane-Sporisorium scitamineum interaction revealed by 2-DE and MALDI-TOF-TOF/MS. Comp Funct Genomics.Cathepsin S, Human (HEK293, His) 2011;2011:989016.MFAP4, Mouse (HEK293, His-Flag) 33.PMID:25959043 Alexander KC, Ramakrishnan K. Infection in the bud, establishment within the host and production of whips in sugarcane smut (Ustilago scitaminea) of sugarcane. Proc Int Soc Sug Cane Technol. 1980;17:1452. 34. Wang W, Vignani R, Scali M, Cresti M. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic evaluation. Electrophoresis. 2006;27:2782. 35. Wu JX, Xu ZL, Zhang YJ, Chai LJ, Yi HL, Deng XX. An integrative analysis of the transcriptome and proteome from the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J Exp Bot. 2014;65:16511. 36. Duthie KA, Osborne LC, Foster LJ, Abraham N. Proteomics analysis of interleukin (IL)-7-induced signaling effectors shows selective adjustments in IL7R449F knock-in T cell progenitors. Mol Cell Proteomics. 2007;six:17000. 37. Guo YR, Singleton PA, Rowshan A, Gucek M, Cole RN, Graham DR, et al. Quantitative proteomics a.
Potassium channel potassiun-channel.com
Just another WordPress site